
OBJECTIVE

To demonstrate the environmental and socio-economic benefits of a **synergic co-treatment of sewage sludge and wastes** (olive mill wastewater, drencher wastewater, landfill leachates, cow manure and pig slurry) with energy and phosphorus recovery through **supercritical water co-oxidation** (SCWcO).

SCWcO

Technology based on the particular properties of **water at temperature and pressure conditions above its critical point** (T>374°C and p>221 bar) and the presence of **oxygen**. Prototype with a treatment capacity up to 1 tone dm/day.

PROJECT PARTNERS

AINIA I Project coordinator Contact: Andrés Pascual – apascual@aina.es Website: www.ainia.es

IMECAL, Industrias Mecánicas Alcaudia, S.A.

ainia

centro tecnológico

Website: www.imecal.com

ÛI V E M

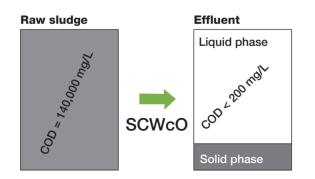
IVEM, Ingeniería de Verificaciones Electromecánicas y Mantenimientos, S.L. Website: www.ivem.es

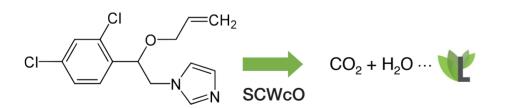
SCFI, Supercritical Fluids International, Ltd. Website: www.scfi.eu

Scfi

URBASER Website: www.urbaser.es

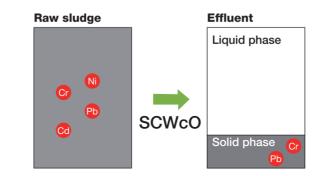
visit us www.lo2x.com

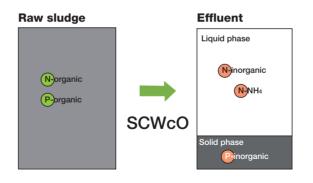

Supercritical water co-oxidation (SCWcO) of urban sewage sludge and wastes


Project co-financed by European Union through LIFE programme LIFE+12 ENV/ES/000477

BENEFITS

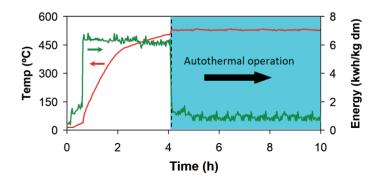
>99% elimination of organic matter. The COD of SCWcO effluent is in average lower than 200 mg/L, reaching lower values than 25 mg/L.

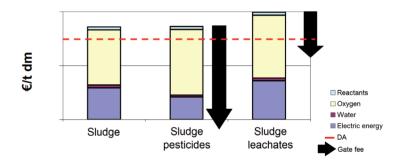

100% elimination of pesticides. Imazalil is degraded up to 230 mg/kg dm, four orders of magnitude higher than anaerobic digestion.


100% elimination of pathogens. Escherichia coli, Clostridum perfringens and Salmonella spp. are completely eliminated. SCWcO leads to complete hygienization.

>85% heavy metals are recaptured for safe handling. Heavy metals are mainly detected in inert solid of the SCWcO effluent.

Recovery of nutrients. Mineralization of nitrogen and phosphorus facilitates the nutrient recovery in order to be used as fertilizers. Nitrogen occurs in the liquid $(NH_4 \sim 2 \text{ g/L})$ while phosphorus is present in the solid phase $(P_2O_5 \sim 250 \text{ g/kg})$.


Disposable clean gases are produced. CO₂ is the main gas generated by SWcO. NOx and SOx gases, typical undesired by-products of combustion processes, are not formed.


■ >98% reduction of sewage sludge leaving WWTP. Total solid reduction higher than 90%. Inert solid from SCWcO is a resource for phosphorus industry whereas wastes from anaerobic digestion may end up in landfills.

Zero heat consumption. The heat produced under supercritical conditions (exothermic reaction) makes pumping the only energy-consuming step (1 kwh/kg dm).

>10% reduction in sludge treatment cost. The gate fee of co-substrate treatment with SCWcO allows reducing the cost of sludge treatment below the cost of anaerobic digestion (DA).

